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Abstract. A nonlinear heat equation which models the microwave assisted joining of two large SiC tubes is
analyzed. By exploiting the small fineness ratio of the structure and disparate time scales an asymptotic theory for
this problem is systematically deduced. Specifically, a one-dimensional nonlinear heat equation is described which
governs the temperature in the outer region. This is a numerically well posed problem and it is efficiently solved
using standard methods. This solution is not valid in the inner region which includes the microwave source. An
inner asymptotic approximation is derived to describe the temperature in this region. This approximation yields
two unknown functions which are determined from matching to the outer solution. The results of the asymptotic
theory are compared to calculations done on the full problem. Since the full problem is numerically ill conditioned,
the asymptotic theory yields enormous savings in computational time and effort.
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1. Introduction

The use of microwaves to join ceramics has received a considerable amount of study over
the past several years [1–3]. Problems of practical and theoretical interest occur on both the
microscopic and macroscopic levels. The microstructure and integrity of the bonding region
and the mechanical strength of ceramic joints are important questions that must be resolved
on the microscopic level. However, problems on the macroscopic level that include localizing
the electric field in the joint region and determining,a priori, the temperature distribution at
the joint and the surrounding material have a profound influence on the micro-processes that
occur during joining. It is this macroscopic description that we address here for the specific
application of joining two hollow cylinders of silicon carbide, such as might be used as radiant
burner tubes for heat treating of metals.

The mathematical model that we build here focuses only on the heat transfer aspects of
the joining process. Specifically we assume that the electric field present in the microwave
cavity is completely specified by the lowest mode and is independent of the material being
heated. This assumption is a good first order approximation for thin walled tubes in a nom-
inally resonant cavity. The mathematical statement of the problem is then a nonlinear initial
value problem for the heat equation with a source that incorporates the modal structure of the
electric field. The nonlinearity arises from radiative heat transport on the surface of the hollow
cylinders which is important at joining temperatures.

Although the initial boundary value problem is fairly straightforward to solve numerically,
even with the nonlinear losses, there are several features of this problem which mitigate against
a frontal numerical attack. First, the aspect ratio of the hollow tube is very small. For the
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radiant tube mentioned above the outer radius is 2in. and its length is 4ft giving an aspect ratio
of 1

24. Thus, the initial boundary value problem must be solved in a long skinny domain which
manifests itself as a small parameter that multiplies the axial diffusion term. This makes the
problem nearly singular and numerically ill-posed. Secondly, there are three time scales in
the problem, two of the same order and the other much smaller. Specifically for the present
application the radial diffusion time is much smaller than the axial diffusion time which is of
the same order as the convective time. This later time is a measure of how quickly the tube
will cool in the absence of the electric source. The disparity of the time scales causes another
computational problem. To capture the thermal dynamics on the shortest time scale,i.e., radial
diffusion, numerical integration must continue for a very long time until the physical effects
on the long time scale become dominant.

We present here an analysis of this problem which is based on the method of matched
asymptotic expansions [4] which exploits the small fineness ratio and disparate time scales. In
the inner region, within and near the cavity, we derive an expansion which captures the physics
of the heating process. This expansion becomes invalid outside the cavity and it contains
undetermined functions which depend upon time. We then construct an outer expansion valid
away from the cavity. The leading order term satisfies a one-dimensional axial heat equation
with a loss term that models radiative and convective heat transfer. The first order correction
satisfies a linear version of this equation. In both cases boundary conditions are prescribed
at one end of the cylinder, but not at the other which corresponds to the cavity. Matching is
then applied to determine these boundary conditions. The first order correction is proved to be
identically zero and the leading order equation must be solved numerically. Once this is done,
the unknown functions of time in the inner region are uniquely determined.

The asymptotic scheme we present here is closely related to others that have appeared in
the literature. Specifically our exploitation of the disparity between the radial diffusion and
convective time scales (i.e., a small Biot number) has been done in the context of FZ silicon
processing [5]. In fact the matching performed in this paper is similar to ours with the solid-
liquid inner region corresponding to our cavity region. Perhaps our method is more closely
related to the schemes developed to study thermal-solutal diffusion in float zones [6] and Ohno
continuous casting of cored rods [7]. These asymptotic schemes, and ours, exploit both the
smallness of the fineness ratio and Biot number. However, our problem is time dependent and
these previous works were not. This additional feature is important in ceramic joining where
the time history of the temperature plays an important role in determining the microstructure
of the joint [3].

Returning to the results of our paper, the one-dimensional nonlinear heat equation that
describes the leading order term in the outer expansion is numerically well posed. Thus, an ac-
curate approximation can easily be constructed in this region. This, coupled with the analytic
information contained in the inner expansion, yields an efficient and accurate description of
the heating process. We also perform a direct numerical attack on this problem for comparison.
Because of the singular nature of the equations this direct numerical approach takes much
longer to solve than the one-dimensional heat equation, about three orders of magnitude. The
results of the direct numerical calculations and those of our asymptotic method agree almost
exactly with errors that are in concert with our asymptotic remainders.

In summary the problem we present here is a simplified model of a real physical exper-
iment. Although certain effects are neglected we believe that it does capture many of the
important physical features of the real problem. Moreover, it provides an excellent example
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Figure 1. Geometrical sketch.

of how asymptotic analysis can reduce a complicated problem to a simpler one which is
amenable to numerical simulation.

2. Problem formulation

Two hollow identical SiC tubes of lengthL are brought together in perfect thermal contact at
Z = 0. The inner radius of each tube isRi, the outer,R0. A cylindrial cavity of radiusRC >
R0, centered atZ = 0, encloses the portion of the joined pipes between±LC. Microwaves are
introduced into the cavity by external circuitry and are contained therein. The setup is shown
schematically in Figure 1.

The temperature in the pipes is governed by the heat equation

ρCP
∂

∂T
= K∇2T + σ

2
|E|2, |Z| < L, Ri < R < R0, (1a)

K
∂

∂R
T = −S(T ), R = R0; S(T ) ≈ h(T − TA)+ sε0(T

4− T 4
A), (1b)

K
∂

∂R
T = 0, R = Ri, (1c)

T = TA, Z = ±L, (1d)

T (X, Y,Z,0) = TA, (1e)

whereρ is the density,CP the thermal capacity,K the thermal conductivity, andσ the effective
electrical conductivity of the tube, respectively. The parameterh is the effective heat transfer
coefficient,s is the Boltzmann constant,ε0 is the emissivity of the tube,TA is the temperature
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of the ambient air in which the joined pipes are situated, and|E| is the amplitude of the electric
field.

There are several points that must be made at this junction. First, the thermal parameters
and the effective electrical conductivity are taken to be independent of temperature. This is
a reasonable assumption for highly conductive materials, such as SiC. However, for other
materials this temperature dependence is important and this point will be revisited in Section 6.
Secondly, the thermal boundary condition atR = R0 takes into account both convective
and radiative heat loss, the later being dominant at the joining temperatureTJ . Finally, the
thermal boundary condition atR = Ri assumes that neither radiative nor convective losses
are important at this surface. This assumption will also be revisited in Section 6 this paper.

To finish the mathematical description of the problem, we must make assumptions regard-
ing the electric field in the cavity. The determination of the field from first principles requires
the solution of Maxwell’s equations in a complicated cavity composed of the metallic walls,
the SiC cylinders, and feeding antennae which couple the microwave power into the cavity.
This problem is quite involved and requires a numerical resolution. Once the electric field is
known throughout the cavity, then (1) is solved for the temperature distribution. It is the later
problem that we focus on in this paper; accordingly we shall simply specify the source term
|E|2 as

|E|2 = E2
0S(πZ/2LC)P (ω1R/RC), (2a)

S(πZ/2LC) = cos2(πZ/2LC)H(−|Z| + LC), Ri < R < R0, (2b)

P(ω1R/RC) = J 2
1 (ω1R/RC), |Z| < LC, (2c)

whereE2
0 is a measure of the microwave power,J1 is the Bessel function of order 1 andω1 its

first zero, andH is the Heaviside function. The cosine and Bessel function in (2) model the
lowest mode in the cavity (T E101) and the Heaviside function crudely models the other aspect
of the cavity which confines the electric field to its interior. This neglects the chokes that are
appended to the cavity (through which the pipes must pass) and their effect of exponentially
attenuating the electric field. Again, this simple choice of|E|2 allows us to focus on the thermal
aspects of the joining problem.

Before closing this section we will rewrite (1–2) in a dimensionless form. This is a nec-
essary first step in both our asymptotic and numerical analyses that will follow. We begin by
introducing the dimensionless variables

r = R/R0, z = Z/L, η = t/θ, u = (T − TA)/TA (3a)

and by defining the dimensionless parameters

θC = ρCPR0/h, θ = ρCPL
2/K, α = θ/θC, θR = ρCPR

2
0/K,

ε = R0/L, γ = ω1R0/RC, χ = π

2

R0

LC
, r1 = Ri

R0
,

β = sε0T
3
A/h, q = [σE2

0/2][R0L/KTA], L(u) = u+ β[(u+ 1)4− 1].
(3b)

HereθC is a time scale associated with convective losses,θ is a time scale associated with
axial diffusion andθR with radial diffusion.L(u) is the dimensionless power lost by radiation
and convection,β is the ratio of radiative to convective power lost at the surface, andε is the
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fineness ratio of the cylinder. For a typical SiC joining experiment we takeL = 4ft,R0 = 2in,
Ri = 1·75in, LC = 6in, RC = 3·9in, h = 10W/m2◦K, K = 100W/m◦K, ε0 =·75, and
s = 5·67×10−9W/m2◦K. This implies that all the parameters defined above areO(1) except
ε ∼ 0·04. In particular the scalingα = O(1) states the physical fact thatθR/θC = 0(ε2), i.e.,
the radical and axial diffusive time scales are disparate. Finally, we have chosenRC = 3·9in
so that the maximum ofJ 2

1 occurs atR = 1·875in,i.e., at the midpoint of the tube wall.
Using the definitions defined in (3) we find that (1–2) take the dimensionless form

ε2 ∂

∂η
u = ∂2

∂r2
u+ 1

r

∂

∂r
u+ ε2 ∂

2

∂z2
u+ qεS(χz

ε
)P (γr), (4a)

∂

∂r
u+ αε2L(u) = 0, r = 1,

∂

∂r
u = 0, r = r1 (4b)

u = 0, z = 1, (4c)

u = 0, η = 0. (4d)

The appearance of the small parameterε2 in front of the time derivative and the second order
spatial derivative implies that the solution is singular in the limit asε → 0. This is further
suggested by the singular character ofS in this limit. It is precisely this characteristic which
makes the initial, boundary-value problem (4) ill conditioned for direct numerical simulations.

3. Asymptotic analysis

In this section we will construct an asymptotic approximation of the solution to (4) in the
limit as ε→ 0 with all the other parameters in the problem fixed andO(1). This will be done
in several stages. First, we shall construct an ‘inner’ approximation which is valid near the
cavity wherez ∼ O(ε) or equivalently whereZ ∼ LC . In the second stage we will derive
an ‘outer approximation’ which is valid away from the cavity. Finally, we will use matching
to determine the various unknown terms in the inner and outer expansions and thus obtain a
complete description of the temperature distribution in the cylinders.

We note here that time has been scaled so that (4) describes the evolution of the temperature
on the longest time scale where convection and axial diffusion are the dominant heat transfer
mechanisms. This occurs whenη ∼ 0(1) or equivalent,t ∼ θ. Since the temperature will
evolve to a steady state on this time scale, it is the most important for a joining application.
However, there is a possibility that features on the shortest time scale, where radial diffusion
dominates, will not be captured by (4). This would occur whent ∼ θR or equivalently,
whenη ∼ 0(ε2). The inability of (4) to describe the temperature evolution on this short time
scale will mathematically manifest itself as an initial time layer of thicknessO(ε2) where the
asymptotic approximation deduced from (4) will become invalid. This nonuniformity will be
addressed and a remedy will be described in Section 3.4.
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3.1. THE INNER EXPANSION

We begin by defining the inner axial variablez̄ = z/ε which we take asO(1). This is equivalent
toZ ∼ LC . Inserting this change of variables into (4) gives

ε2 ∂

∂η
u = ∂2

∂r2
u+ 1

r

∂

∂r
u+ ∂2

∂z̄2
u+ qεS(χz̄)P (γr), r1 < r < 1, 0< z̄ <∞, (5a)

∂

∂r
u+ αε2L(u) = 0, r = 1,

∂

∂r
u = 0, r = r1, (5b)

∂

∂z̄
u = 0, z̄ = 0, (5c)

u = 0, η = 0. (5d)

We observe that the source functionS, the Equation (5a), boundary conditions (5b), and initial
condition (5d) are symmetric in̄z so that we need only solve the problem on the half interval
z̄ > 0. This symmetric is reflected in the Neumann boundary condition (5c). We next expand
u in the asymptotic series

u =
∞∑
n=0

un(r, z̄,η)ε
n. (6)

Inserting this expansion into (5), expanding the nonlinear term using a Taylor series expansion,
and equating to zero the coefficients of the powers ofε yields an infinite set of equations.
These sequentially determineun(r, z̄,η). We shall just list the first three which are sufficient
to deduceu toO(ε2). They are:

∇̄2u0 = 0, r1 < r < 1, 0< z̄ <∞, (7a)

∂

∂r
u0 = 0, r = r1,1, (7b)

∂

∂z̄
u0 = 0, z̄ = 0; u0 = 0,η = 0, (7c)

∇̄2u1 = −qS(χz̄)P (γr), r1 < r < 1, 0< z̄ <∞, (8a)

∂

∂r
u1 = 0, r = r1,1, (8b)

∂

∂z̄
u1 = 0, z̄ = 0; u1 = 0,η = 0, (8c)

∇̄2u2 = ∂

∂η
u0, r1 < r < 1, 0< z̄ <∞, (9a)
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∂

∂r
u2 = 0, r = r1, ∂

∂r
u2 = −αL(u0), (9b)

∂

∂z̄
u2 = 0, z̄ = 0; u2 = 0,η = 0, (9c)

where∇̄2 is the Laplacian operator inr andz̄.
The solution to the boundary value problem (7) is justu0 = a0(η). This function is un-

known at this stage of our analysis. The boundary value problem (8) is more involved. Its
solution is given by the expansion

u1 = b0ψ0+
∞∑
m=1

bm(z̄,η)ψm(r), (10a)

where the eigenfunctionsψm satisfy

d2ψm

dr2
+ 1

r

dψm

dr
+ λmψm = 0, (10b)

dψm

dr
= 0, r = r1,1. (10c)

This is a regular Sturm Liouville problem; accordingly the eigenfunctionsψm form an ortho-
normal set and their corresponding eigenvalues are real and ordered,λ0 < λ1..... In fact the
lowest eigenvalueλ0 = 0 and the corresponding eigenfunctionψ0 =

√
2

1−r2
1
, i.e., a constant.

We find from (10) and (8) that the functionsbm satisfy the ordinary differential equations

d2bm

dz̄2
− λmbm = −qS(χz̄)Pm, (11a)

dbm
dz̄
= 0, z̄ = 0, (11b)

Pm =
∫ 1

r1

ψmP (γr)rdr ≡ 〈ψm, P 〉 (11c)

The solutions to these simple boundary value problems are

b0 = a1(η)− qP0

∫ z̄

0
(z̄ − p)S(χp)dp, (12a)

bm = γm coshβmz̄ − qPm
βm

∫ z̄

0
sinhβm(z̄ − p)S(χp)dp, (12b)

whereβm = √λm, z̄c = ZC/R0, and

γm = qPm

βm

∫ z̄C

0
S(χp)e−βmpdp. (12c)
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The constantγm is chosen so thatbm decays exponentially as̄z→∞, a condition that is later
required for matching, and the functiona1(η) is unknown at this stage of the analysis.

The solution to the boundary value problem (9) is determined along similar lines. Omitting
the details of the analysis we simply state the result

u2 = ar + b2r
2+ [a2(η)+ c0]ψ0+

∞∑
m=1

cm(z̄,η)ψm(r), (13a)

a = αr1

1− r1L(u0), b = −α

1− r1L(u0), (13b)

c0ψ0 = z̄2

2
10; 10 = du0

dη
− 2b − aψ2

0(1− r1), (13c)

cm = 1m

λm
; 1m = −a

∫ 1

r1

ψmdr, m ≥ 1, (13d)

wherea2(η) is unknown at this stage of the analysis.
Combining (10a) and 13a) with (6) gives the inner expansion

u = a0(η)+ ε

[ ∞∑
m=0

bmψm

]

+ ε2

[
ar + b

2
r2+ a2(η)ψ0+ c0ψ0+

∞∑
m=1

cm(z̄,η)ψm(r)

]
+O(ε3),

(14)

whereO(ε3) represents the contributions of the higher order terms. We shall need the far field
expansion,i.e., z̄ >> 1, of this expansion shortly. It is easily deduced to be

u = a0(η)+ ε[a1(η)+ qP0(d1 − d0z̄)]ψ0

+ ε2

[
ar + b

2
r2+ a2(η)ψ0+ z̄

2

2
10+

∞∑
m=1

1m

λm
ψm

]
,

(15a)

d0 =
∫ z̄c

0
S(χP)dp, d1 =

∫ z̄c

0
pS(χP)dp, (15b)

where exponentially small terms have been neglected. The constant parameterqP0d0 is related
to the total power supplied by the microwave source andqP0d1 to its first moment. It is clear
from the linear and quadratic terms in this expression that (14) is not a uniform asymptotic
expansion. Another representation must be found and this is the subject of the next section.

3.2. THE OUTER EXPANSION

We now seek an asymptotic expansion of the original problem (4) whenz = 0(1). The source
term in (4a) is zero whenz is restricted in this faction. We again expand u in an asymptotic
expansion

u =
∞∑
m=0

wm(r, z,η)ε
m, (16)
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where the coefficientswm now depend on the outer variablez. Inserting this expansion into
(4), expanding the nonlinear term using a Taylor series expansion, and equating to zero the
coefficients of the powers ofε yields an infinite set of equations. These sequentially determine
wm(r, z,η). We shall just list the first four which are sufficient to deduceu to O(ε2). They
are:

∂2

∂r2
wj + 1

r

∂

∂r
wj = 0, r1 < r < 1, 0< z < 1, (17a)

∂

∂r
wj = 0, r = r1,1, (17b)

wj = 0, z = 1; wj = 0, η = 0 (17c)

for j = 0, 1,

∂2

∂r2
w2+ 1

r

∂

∂r
w2 = ∂

∂η
w0− ∂2

∂z2
w0, (18a)

∂

∂r
w2 = 0, r = r1; ∂

∂r
w2 = −αL(w0), r = 1, (18b)

w2 = 0, z = 1; w2 = 0, η = 0, (18c)

∂2

∂r2
w3+ 1

r

∂

∂r
w3 = ∂

∂η
w1− ∂2

∂z2
w1, (19a)

∂

∂r
w3 = 0, r = r1; ∂

∂r
w3 = −αL̇(w0)w1, r = 1, (19b)

w3 = 0, z = 1; w3 = 0, η = 0, (19c)

whereL̇ is the derivative ofL with respect to its argument.
The solutions of (17) arew0(z,η) andw1(z,η) for j = 1 and j= 2 respectively. Both of

these functions are unknown at this stage of our analysis. Multiplying (18a) byr, integrating
the result fromr = r1 to r = 1, and applying the boundary conditions (18b) we find that

∂

∂η
w0 = ∂2

∂z2
w0− αψ2

0L(w0). (20a)

Using this information we find the solution of (18) is

w2 = f2(z,η)− α

2
ψ2

0L(w0)

[
r2

2
− r2

1 log(r)

]
, (20b)

wheref2 is unknown at this stage. Similar considerations of (19) give the result

∂

∂η
w1 = ∂2

∂z2
w1− αψ2

0L̇(w0)w1. (21)
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Summarizing the results to this point our outer expansion is given by

u = w0(z,η)+ εw1(z,η)+ ε2

{
f2(z,η)− α

2
ψ2

0L(w0)

[
r2

2
− r2

1 log(r)

]}
+O(ε3), (22)

wherew0 andw1 satisfy Equations (20a) and (21), respectively.

3.3. MATCHING

At this stage of our analysis there are several undetermined quantities which are necessary for
the description of the temperature in both the inner and outer regions. In the inner region the
functionsa0(η) anda1(η) are unknown. These are required to obtain a local approximation
to O(ε) there. In the outer region we know thatw0 andw1 satisfy the one-dimensional heat
equations (20a) and (21), respectively. Both of these functions satisfy (17c),i.e., they are
zero initially and both satisfy a homogenous Dirichlet condition atz = 1. To complete the
boundary value problems that each satisfies we need to know their behavior atz = 0.

The determination of these unknown quantities is obtained by matching. According to this
procedure we expand the inner solution forz̄ >> 1 and then rewrite the result in terms of the
outer variablez. Then we expand the outer solution asz → 0 and compare the two results.
The principal of Matched Asymptotics [4] states that these two results must be the same. This
equality then determines the unknown quantities.

From (15) we find that the inner expansion forz̄ >> 1 can be written as

u = a0(η)− qP0d0ψ0z + 10

2
z2+ ε[a1(η)+ qP0d1]ψ0+

+ ε2

[
ar + 1

2
br2 + a2(η)ψ0+

∞∑
m=1

1m

λm
ψm

]
+O(ε3).

(23a)

Now the outer result (22) must be expanded asz→ 0. Using the Taylor series expansions of
bothw0 andw1 we obtain

u = w0(0,η)+ z ∂
∂z
w0(0,η)+ z

2

2

∂2

∂z2
w0(0,η)+ · · · +

+ ε

[
w1(0,η)+ z ∂

∂z
w1(0,η)+ · · ·

]
+O(ε2).

(23b)

Comparing these two expansions we find that

w0(0,η) = a0(η),
∂

∂z
w0(0,η) = −qd0P0ψ0,

∂2

∂z2
w0 = ψ010, (24a,b,c)

w1(0,η) = [qd1P0+ a1(η)]ψ0,
∂

∂z
w1(0,η) = 0. (24d,e)

Now when (24b) is used in conjunction with (17c) and (20a) we obtain a well posed initial
boundary value problem forw0. Similarly, when (24e) is used along with (17c) and (21) we
obtain a well posed initial boundary value problem forw1. In fact the solution of this problem
isw1 = 0. This follows because the initial condition and boundary conditions forw1 are zero
and there is no source term in the equation. The matching condition (24d) then yields

a1 = −qd1P0. (25)
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Now the initial boundary values problem forw0 must be numerically solved in general. Once
this is donew0(0,η) is determined anda0(η) is obtained from (24a). Inserting this information
and (25) into (14) determines the temperature in the inner region toO(ε).

The last thing to check is the condition (24c). By using (20a) evaluated atz = 0 and
replacingw0 by u0 there we find, using the definition of10 in (13b), that (24c) is an identity.
We can push this analysis further and match higher order terms, but we do not do so here.

3.4. THE ASYMPTOTIC MODEL

We briefly restate here the results of our asymptotic analyses for reference and later compari-
son. Sincew1 is identically zero the temperature in the outer region is given by

u = w0(z,η)+O(ε2), (26)

where theO(ε2) represents the error at this level of approximation. The leading order term
satisfies the initial boundary value problem

∂

∂η
w0 = ∂2

∂z2
w0− αψ2

0L(w0), 0< z < 1, η > 0, (27a)

∂

∂z
w0 = −qP0d0ψ0, z = 0; w0 = 0, z = 1, (27b)

w0 = 0, η = 0, (27c)

which must be resolved numerically. We note here that the term drivingw0 is the nonzero Neu-
mann condition (27b) where the right hand side of this boundary condition is the projection
of the total microwave power onto the eigenfunctionψ0. Equation (27) is a one-dimensional
heat equation which is clearly easier to solve numerically than the original initial boundary
value problem (5). The gain from our asymptotic analysis is not just a reduction in dimension;
the original problem is numerically ill-conditioned whenε << 1 and (27) is not.

Oncew0 is numerically determined its value at the origin is known. Using this information
and (25) we find from (14) that the temperature in the inner region is given by

u = w0(0,η)− εqP0

[∫ z̄c

0
pS(χp)dp +

∫ z̄

0
(z̄− p)S(χp)dp

]
ψ0+

+ ε

∞∑
m=1

qPm

βm
ψm

[
coshβmz̄

∫ z̄c

0
S(χp)e−βmpdp−∫ z̄0

sinhβm(z̄− p)S(χp)dp
]
+ ε2u2 +O(ε3),

(28)

whereu2 is given by (13). Thus the determination of the temperature is completely described
toO(ε) on the entire physical interval 0< Z < L when (27) is solved numerically.

We now revisit a point that was made in the opening of this section. There we speculated
that there might be a boundary layer (η ∼ O(ε2)) where the inner and outer expansions are
not valid. Clearly the outer expansion (26) satisfies the initial condition atη = 0 by design
through (27c). However, the inner expansion only vanishes toO(ε).

We shall briefly describe the method which reconciles this discrepancy and omit the details
for brevity. First, we introduce a new short time variablet̄ = η/ε2 ≡ t/θR into (4) and seek
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Figure 2.Temperature evolution at the joint. Leading-
order asymptotic estimate:w0(0, η).

Figure 3. Temperature distribution at various times.
Leading-order asymptotic estimate:w0(z, η) with
q = 45.

another asymptotic expansion of the temperature. This would proceed in exactly the same
way as the development of the inner expansion in Section 3.1, except for two differences.
First, the expansion would begin with an orderε term since this is the size of the source term.
More importantly, the sequential boundary value problems are all parabolic and they describe
diffusion in the radial and axial directions on the short time scale. Then by expanding this new
asymptotic expansion for a fixed̄t and z̄ → ∞ we can show thatu → 0. This result then
matches, as̄t → ∞, into the outer expansion (26) asη → 0. Thus, the homogeneous initial
condition (27c) is valid. We can also show that this new expansion matches, ast̄ → ∞ (28)
asη→ 0. Thus, the initial conditions are transformed by the radial and axial diffusion on the
short time scale into the proper function on the long time scale. Finally, we can deduce from
this matching thata0(η) = w0(0,η) ∼ 2P0d0

√
η/π asη → 0, and this is observed in our

numerical experiments described below.

4. Numerical example

Using the parameter values stated in Section 2 we find thatε = 0·04, γ = 1·95, χ = 0·52,
α = 1·74,β = 0·01, r1 = 0·875,ψ0 = 2·92, z̄c = 3, θC = 3 hrs, andθR = 7 mins. From the
definition of d0 and d1, equation (15b), straight forward integration gives d0 = z̄/2= 1 ·5, and
d1 = (z̄2

c −1/χ2)/4= 1·33. The constantP0 =
∫ 1
r1
rψ0J

2
1 (γr)dr must be solved numerically,

its value isP0 = 0·115. The only free parameter at this stage isq which from (3b) is seen to
be proportional to the microwave power; the flux in (27b) is−0.5q.

We have used a finite-difference scheme based on Crank-Nicolson differencing to solve
(27) numerically. The nonlinear loss term,L(w0), is handled by linearizing locally at each
time step. We have taken very fine numerical grids to assure that the solution is fully resolved.
Figure 2 shows a time history forw0(0,η) for q = 30, 35, 40, 45, 50. From (28) this is
the lowest order behavior of the inner solution. As expected, the temperature at the origin
behaves like

√
η and rises rapidly for small values ofη, indeed at an infinite rate initially,

due to heat flux imposed at the origin. As convective and radiative losses balance this flux,
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Figure 4.Comparison ofu(1, 0,η) and asymptotics. Figure 5. Steady-state surface temperature. Leading-
order asymptotics and full simultation.

the temperature at the origin saturates at a steady value which is a monotonically increasing
function of q. Figure 3 showsw0(z,η) for various values ofη andq = 45. Clearly, asη
becomes largew0 goes to a steady state with its maximum temperature at the origin. We note
that the steady steate temperature is established more rapidly atz = 0 than at points with
z > 0.

An important question that can be answered at this point is to estimate the power required
to obtain a prescribed temperature at the joint,Z = 0. For example if the joining temperature
is TJ = 1100◦C, then this corresponds to a dimensionless temperature ofuJ = 3·666 for
TA = 30◦C. From Figure 2 we see that selectingq ≈ 35 gives a temperature of about
uJ . However, using the higher-order corrections tow0 given in (28) and (14) can refine this
estimate considerably. In applying these corrections, we use the result that thePm/λm’s for
m ≥ 1 anda2(η) are negligibly small in our case. Applying theO(ε) correction givesq ≈ 46;
with theO(ε2) correction, we estimateqJ = 45. This result compares favorably with the
value ofqJ = 44 estimated from the direct simulations of (4) discussed in the next section. In
dimensional terms the value ofq = 44 corresponds to about 1040 W.

5. A full numerical simulation

In this section we briefly describe numerical experiments on the full system (4). We treat
(4) using an alternating-directions splitting. Diffusion in ther andz directions is treated with
Crank-Nicolson differencing. Nonlinear terms are linearized locally. Because of the very large
diffusion coefficient in the radial direction extremely small time steps are required. The com-
putational resources, measured in total number of arithmetic operations, required to accurately
solve the full system (4) exceed those needed to obtain accurate solutions of the asymptotic
model (27) by at least a factor of a thousand. We takeq = 44 in the following.

In Figure 4 we compare the time histories of the surface temperature at the origin for
the full scale simulation and asymptotic analysis. The surface temperature at the origin for
the simulation based on (4) is denotedu(1,0,η). The leading order asymptoticsw0(0,η)
are well aboveu(1,0,η) for η > 0. The relative error in the prediction of the steady state
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temperature is about 20%. The first order correctionw(0,η)−εqP0d1ψ0 lies below and much
closer tou(1,0,η). We note that sincew(0,η) = 0 the first order correction gives a negative
temperature for very small values ofη. Furthermore, we note that the first order correction
is insensitive to the nonlinearity in the problem which is measured byβ. The relative error
in the prediction of the steady state temperature is about 4%. The nonlinearity affects the
O(ε2) correction which gives very good agreement withu(1,0,η). The relative error in the
prediction of the steady state temperature is about 2%.

In Figure 5 we show the steady state surface temperature obtained from numerical solution
of the full system (4) as the solid curve and the steady state temperature distribution from
numerical solution of the leading order asymptotic system (27) as the dotted curve. We judge
the solutions to have effectively reached steady state whenη = 0·2. The two are almost
identical forz ≥ 3 and begin to differ whenz is reduced. The difference is at most 2% for
zc = 1.5≤ z < 3, i.e., up to the cavity and the inner region. This excellent agreement between
the outer expansion and the numerical simulation there is almost unexpected. Moreover, the
outer expansion continues to give an excellent approximation well inside the cavity until the
two curves intersect. At this point the inner expansion really must be employed. Because the
radiative loss is important here we need the inner expansion toO(ε2). This is a very complex
expression which we will not evaluate at this time for arbitraryz̄. The value of this expansion
at z̄ = 0 has been described in the previous section and Figure 4 demonstrates its effectiveness
at this point.

6. Conclusion

We have analyzed a nonlinear heat equation which models the microwave assisted joining
two large SiC tubes. By exploiting the small fineness ratio of the structure and the disparate
time scalesθR andθC we deduced an asymptotic theory for this problem. Specifically, we
found that the temperature in the outer region was governed by a one-dimensional nonlinear
heat equation. This is a numerically well posed problem and we efficiently solve it using a
standard method. This solution is not valid in the inner region which includes the microwave
source. We have derived an asymptotic approximation to the temperature in this region. This
approximation yielded two unknown functions which were determined from matching and
were obtained from the outer solution. We have compared the results of our asymptotic theory
to calculations done on the full problem. Since the full problem is numerically ill conditioned,
our asymptotic theory yields enormous savings in time and computational effort.

We close this section by making two observations. First, all of our analysis can be general-
ized to handle the case of temperature dependent thermal and electrical conductivities. If we
setk(u) = K(T )/K(TA) andf (u) = σ(T )/σ(TA), then the initial boundary value problem
(27) is replaced by

∂

∂η
w0 = ∂

∂z

(
k(w0)

∂

∂z
w0

)
− αψ2

0L(w0), 0< z < 1, η > 0, (29a)

k(w0)
∂

∂z
w0 = −qf (w0)P0d0ψ0, z = 0; w0 = 0, z = 1, (29b)

w0 = 0, η = 0. (29c)
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The inner result (28) is modified in a similar fashion. Thus, we again obtain a one-dimensional
problem. All of the remarks made above apply to this case. The second observation is that the
homogeneous boundary(∂/∂R)T = 0 atR = Ri is a very good approximation. In Appendix
A we show, under the assumptions that the pipe is a black body and that no air is forced
through the inside of the tube, that the asymptotic results presented in this paper are valid to
at leastO(ε2).
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Appendix A

The dimensionless radiative thermal balance is

∂

∂r
u+ αβε2

[
(u(r, z,η)+ 1)4−

∫ 1

−1
(u(r, z′,η)+ 1)4

1

ε
K

(
z− z′

ε
d

)
z′
]
= 0, (A1a)

r = r1
where the Kernel is an even function of its argument and satisfies∫ 1

−1

1

ε
K

(
z − z′

ε

)
dz′ = 1 (A1b)

for all ε. The kernel is an involved trigonometric integral obtained from a view angle analysis
[8] and we do not produce it here. The integral in (A1a) represents the incident heat flux
coming from all the interior points of the surfacer = r1. If we rewrite (A1a) in terms of the
inner variablēz, then we find

dis
∂

∂r
u+ αβε2

[
(u+ 1)4−

∫ ∞
−∞
(u+ 1)4K(z̄ − p)dp

]
= 0, r = r1. (A2)

This will enter the analysis at theO(ε2) stage by forcingu2, i.e.,

∂

∂r
u2+ αβε2

[
(a0 + 1)4−

∫ ∞
−∞
(1+ a0)

4K(z̄ − p)dp
]
= 0, r = r1. (A3)

But a0 is just a function ofη and so by virtue of (A1b)(∂/∂r)u2 = 0 atr = r1. Thus the inner
expansion remains the same at least toO(ε2).

In the outer region (A1a) holds. We observe that1
ε
K((z − z′)/ε) behaves like a delta

function asε → 0. Thus, the integral picks off(u + 1)4 at z′ = z and produces a correction
term which is proportional to(∂2/∂z2)(u+ 1)4 at z′ = z. The result is

∂

∂r
u+ αβε4c1

∂

∂z

[
4(u+ 1)3

∂

∂z
u

]
= 0, r = r1, (A4)
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wherec1 is anO(1) constant. This implies that the outer expansion will not be affected until
theO(ε4) term. Thus the outer expansion remains the same at least toO(ε3).
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